
More Finite Element Truss Problem 
 

7.0  Truss Example 
 

In the last lecture we looked at using a finite element technique to computer the 
stresses in a truss.  We also developed the global stiffness matrix.  We will use the 
methods develop there to solve a problem.  Consider 

 

 
 
 
7.1 Computing Nodal Displacements 

 
There are 4 nodes and 4 elements making up the truss.  We are going to do a two 

dimensional analysis so each node is constrained to move in only the X or Y direction.  
We call these directions of motion degrees of freedom or dof for short.  There are 4 nodes 
and 8 degrees of freedom (two degrees of freedom for each node).  We can number the 
degrees of freedom with the formulas: 

 
Vertical degree of freedom  nodedof *2=    (7.1) 
Horizontal degree of freedom  1*2 −= nodedof    (7.2) 
 

where node is the node number. 
We can locate each node by its coordinates.  The table below shows the 

coordinates of the nodes in the problem we are solving.  We can use these coordinates to 
determine the lengths and angles of the elements. 
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Node X Y 
1 0 0 
2 40 0 
3 40 30 
4 0 30 

 
Each element can be described as extending from one node to another.  This also 

can be defined in a table. 
 

Element From Node To Node 
1 1 2 
2 3 2 
3 1 3 
4 4 3 

 
From these two tables we can derive the lengths of each element and the cosine 

and sine of their orientation.  This is shown in the table below. 
 

Element Length Cosine Sine 
1 40 1 0 
2 30 0 -1 
3 50 0.8 0.6 
4 40 1 0 

 
In the last lecture we developed the stiffness matrix for an element.   
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This stiffness matrix is for an element.  The element attaches to two nodes and 

each of these nodes has two degrees of freedom.  The rows and columns of the stiffness 
matrix correlate to those degrees of freedom. 

Using the equation shown I (6.21) we can construct that stiffness matrix for 
element 1 defined in the table above.  The stiffness matrix is: 
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Global dof 



 
Element 2 
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Element 3 
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Element 4 
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The next step is to add the stiffness matrices for the elements to create a matrix 

for the entire structure.  We can facilitate this by creating a common factor for Young’s 
modulus and the length of the elements. 

For element 1, we divide the outside by 15 and multiply each element of the 
matrix by 15.  Multiplying and dividing by the same number is the same as multiplying 
and dividing by 1. 
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We multiply and divide element 2 by 20. 
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Multiply and divide element 3 by 12. 
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We do the same for element 4 by multiplying and dividing it by 15. 
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The coefficient for each stiffness matrix is the same so we can easily add the 

matrices.  We add the degree of freedom for each element stiffness matrix into the same 
degree of freedom in the structural matrix.  The resulting structural stiffness matrix is 
shown below. 
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Remembering our basic equation 
 

FKQ =        (7.12) 
 

where K is the structural stiffness matrix, Q is the displacement of each node, and F is the 
external force matrix.  This results in 
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We have boundary conditions at the fixed supports.  Our assumption is that these 

joints will not move in the constrained direction.  We remove these from our matrix.  The 
constrained displacements are dof 1, 2, 4, 7, and 8.  The resulting matrix is: 
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We can use Gaussian elimination or any number of other solution techniques to 

solve the system of equations shown above.  Doing so yields 
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7.2 Computing Stresses 
 

From a previous lecture we know that  
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We use this equation to compute the stress in each element. 
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or 
 

psi000,201 =σ        (7.17) 
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psi0.880,212 =σ        (7.19) 

 
Using a similar technique we get 
 

psi208,53 =σ         (7.20) 
and 
 

psi167,44 =σ         (7.21) 
 

7.3 Computing the Reactions 
 

The last step is to compute the support reactions.  We need to determine the 
reaction forces along dof 1, 2, 3, 7, and 8 which correspond to the fixed supports.  These 
are obtained by substituting Q into the original finite element equation. 

 
FKQR −=         (7.22) 

 
We only need to use those rows of the structural stiffness matrix that correspond 

to the fixed supports.  At these supports, we are not supplying an external force so F=0.  
Our equation becomes 

 
KQR =          (7.23) 

 
or 
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We multiply the stiffness matrix K and the deformation vector Q to get the reactions.  
They are shown in the following equation. 
 



























−

−

=



























0
167,4
879,21
126,3
8333,15

8

7

4

2

1

R
R
R
R

R

       (7.24) 

 
 
 

  


